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MOTIVATION
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One-Sided Feedback!

• Loan approvals

• Hiring decisions

• Online advertising

• Predictive policing

• ...

MODEL
• (Unknown) Distribution D over X × {±1}

• Hypothesis classH : X → {±1}

Learner-Environment Interaction
for t = 1, ..., T do

Learner deploys a policy πt ∈ ∆(H)
Environment draws (xt, yt) ∼ D independently; learner observes xt
Learner labels the point ŷt = ht(xt), where ht ∼ πt
if ŷt = +1 then

Learner observes yt

FAIRNESS

Fairness constraint: Algorithm must, on every round, deploy a fair policy.
Fair policy: Similar false positive rates (or false negative rates) on both sub-
populations: ∆FPR(π) := FPRMen(π)− FPRWomen(π) = 0

FAIRNESS-ACCURACY TRADE-OFF
Definition (γ-fair policy) Fix a distribution D. A policy π ∈ ∆(H) satisfies
the γ-equalized false positive rate constraint if |∆FPR(π)| ≤ γ.

Question: Why use a policy instead of a single hypothesis?

• Policies achieve better accuracy-fairness trade-off than single hypotheses.

• Optimal trade-off is always attained by policy of support size 2 (at most).

Example:

OBJECTIVE

min
A

Regret(A) w.r.t. γ − fair policies in ∆(H)

s.t. A is γ′ − fair online learning algorithm

Question: What is the optimal trade-off between algorithm’s regret and the
“fairness gap” γ′ − γ ≥ 0?

PARTIAL FEEDBACK->CONTEXTUAL BANDITS

Remember: No feedback for negative predictions!

Question: How can learner minimize regret, when he cannot even
measure his own regret?

Solution: Regret-preserving manipulation of the loss matrix:

Regret-preserving: ∀t ∈ [T ] : St = {(xi, yi)}ti=1

∀h : L̃(h, St) = L(h, St) +
∑t
i=1 1[yi=defaults]

Difference between the losses of any two hypotheses remains the same
after the transformation.

MAIN RESULT
Theorem There exists an oracle-efficient algorithm that takes parameters
δ ∈ [0, 1√

T
] and γ ≥ 0 as input and satisfies, w.p. 1 − δ, γ′-fairness and has

an expected regret at most Õ(
√
T ln(|H|/δ)) with respect to the class of γ-fair

policies, where γ′ = γ +O(
√

ln(|H|/δ)/T 1/4).

ALGORITHM
Basic outline:

1. For the first T0 rounds, perform pure exploration by always predicting +1
to collect labelled data.

2. Use collected data to form empirical fairness constraints, construct a fair
Cost Sensitive Classification oracle based on empirical constraints.

3. Run an (oracle-efficient) adaptive contextual bandit algorithm - ”Mini-
Monster“ by Agarwal et al. 2014 - that minimizes cumulative regret, while
satisfying the empirical fairness constraint on every round.

Naive approaches: Explore-then-exploit (sub-optimal), Exploration +
standard bandit algorithm (inefficient).

OPTIMIZATION ORACLE
1. We assume access to a Cost-Sensitive Classification oracle.

2. We adapt the reduction by Agarwal et al. 2018 to handle optimization
with constraints defined only on the empirical distribution formed by the
exploration data.

3. The result is an oracle that solves Cost-Sensitive Classification problems
with empirical fairness constraints.

REGRET ANALYSIS

Main challenge: Unlike Agarwal et al. 2014, have to handle an Infinite
policy class.

Useful fact: The set of optimal fair policies is sparse.

LOWER BOUND

Theorem Fix any α ∈ (0, 0.5) and let T ≥ α
√

16. Fix any δ ≤ 0.24. There
exists a hypothesis class H containing the constant classifiers {±1} such that
any algorithm satisfying a T−α-fairness constraint w.p. 1−δ has expected regret
with respect to the set of 0-fair policies of Ω

(
T 2α

)
.

Intuition:

1. Define instance consisting of two very similar distributions, D1 and D2

defined as a function of our algorithm’s fairness target γ.

2. Roughly, there are not enough samples to distinguish the distributions
until at least Θ( 1

γ2 ) rounds elapse

3. In order to equalize false positive rates on both distributions, an algorithm
must “play it safe” and incur linear regret per round during this time.

Conclusion: The trade-off our algorithm exhibits between its regret bound
and the “fairness gap” γ′ − γ is optimal.
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